Math 115
Summer 2017
Lecture 7
$A\left(x_{1}, y_{1}\right) \dot{\varepsilon} B\left(x_{2}, y_{2}\right)$

Midpoint $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
slope $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$, distance

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

$$
\begin{aligned}
& A(-5,-3), B(1,5) \\
& M\left(\frac{-5+1}{2}, \frac{-3+5}{2}\right)=M(-2,1) \\
& d=\sqrt{(-5-1)^{2}+(-3-5)^{2}}=\sqrt{(-6)^{2}+(-8)^{2}} \\
&=\sqrt{100}=10
\end{aligned}
$$

Vertical line $\Leftrightarrow x=a \Leftrightarrow$ No slope Horizontal line $\Leftrightarrow y=b \Rightarrow$ Zero slope Graph $x=6 \quad \varepsilon y=-4$, Identify slope for each line.

Slant line

1) Standard form $A x+B y=C$
use intercept method to graph

x	y
0	
	0

$$
m=\frac{5}{3}
$$

This is the best method when C is divisible by both A and B.

$$
5 x-3 y=-15
$$

$$
\begin{array}{c|c}
x & y \\
\hline 0 & 5 \\
\hline-3 & 0
\end{array}
$$

$$
4 x+3 y=-12
$$

Graph using the intercept method find its slope, Show rise غ run of slope on the graph.

Slant line
Slope-Int. Form $y=m x+b$
Y-Int $(0, b)$, Slope m

$$
\begin{aligned}
& y=\sum_{4}^{2} x-3 \\
& y-\operatorname{Int}(0,-3), m=2=\frac{2}{1}
\end{aligned}
$$

$m>0 \Leftrightarrow$ Increasing line

$$
y=\frac{-3}{7} x+5
$$

1) Y-Int $(0,5)$
2) Slope $m=\frac{-3}{7}$
3) Graph

4) Discuss Rise, Run, Increasing, decreasing

$$
2 x+5 y=-15 \quad 5 y=-2 x-15
$$

1) write in $\underbrace{\text { slope-Int. Form }}_{y=m x+b} y=\frac{-2}{5} x-\frac{15}{5}$
2) $($-Int $\dot{\varepsilon}$ slope

$$
y=\frac{-2}{5} x-3
$$

$$
(0,-3) \quad m=-2 / 5
$$

3) Draw, Discuss rise Er run, Discuss Increasing/Decreasing $m<0$ Decreasing line

Draw a line that contains $(-2,5)$ with slope $\frac{2}{3}$

Increasing

Draw a line that contains ($-2,5$) with slope $\frac{-5}{7}$

$$
m<0
$$

Decreasing

Draw a line that contains ($-2,5$) with $\underbrace{\text { Slope Zero. }}_{m=0}$

Horizontal line

Draw a line that contains $(-2,5)$ with slope undefined

Draw $y=5, x=-8,2 x+3 y=6$, and $y=\frac{2}{3} x-2$. Shade the region that is enclosed by all 4 lines.

Graphing Point-slope form of a line

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-2=\frac{3}{5}(x-4)
$$

$$
\text { Point }(4,2)
$$

$$
\text { Slope } m=\frac{3}{5}
$$

$$
y+5=\frac{-2}{3}(x-4)
$$

Point $(4,-5)$

$$
m=\frac{-2}{3}
$$

$$
m<0
$$

Decreasing

$$
y-2=\frac{1}{4}(x+5)
$$

Point ($-5,2$)

$$
m=\frac{1}{4}
$$

$$
m>0
$$

$S G 8$ is due tomorrow @ 6:00 PM.

Graphing linear inequalities

Graph \& shade

Graph غे shade:

$$
2 x-3 y<9
$$

Divide by -3

$$
\begin{aligned}
& y>\frac{-2}{-3} x+\frac{9}{-3} \\
& y>\frac{2}{3} x-3
\end{aligned}
$$

Hint: write in
slope-Int. Form
"Isolate Y"

$$
-3 y \mathbb{k}-2 x+9
$$

Graph Er shade

$$
\left\{\begin{array}{l}
x \geq-3 \\
y<4 \\
y \geq \frac{3}{4} x-3
\end{array}\right.
$$

Due Tomorrow: SG 8 work on last pase of $S G 9 \dot{\varepsilon} 10$.
find an angle such that the sum of four times the angle and 3 times its Supplement is 565°.

$$
\begin{aligned}
& \text { Supplement is } 565^{\circ} \text {. Angle } \\
& \hline 4 x+3(180-x)=565
\end{aligned}
$$

find an angle such that the difference between 5 times its supplement and twice its complement is equal to 630°.

Angle	Comp.	Suppl.
x	$90-x$	$180-x$

$$
\begin{gathered}
\text { 5. Suppl. }-2 \cdot \text { Comp. }=630^{\circ} \\
5(180-x)-2(90-x)=630^{\circ} \\
900-5 x-180+2 x=630 \\
-3 x+720=630 \\
-3 x=630-720 \\
-3 x=-90 \\
x=30
\end{gathered}
$$

Vertical Angles are equal find x, and measure of each angle.

$$
\begin{gathered}
7 x-20=5 x+40 \\
\vdots \\
x=30
\end{gathered}
$$

Straight angle $(x+30)^{\circ}=32+30=62^{\circ}$

Find x, find each marked angle.

$$
\begin{array}{cl}
5 x=160 & \text { Due Tomorrow } \\
x=32 & \text { SG. } 8
\end{array}
$$

WP: Angles E. Triangles

